<-- Terug naar het call overzicht

Waste-to-value devices - circular production of renewable fuels, chemicals and materials

Deadline

29 oktober 2025

Budget

120.000.000

Code

HORIZON-EIC-2025-PATHFINDERCHALLENGES-01-04

Background and scope

Fossil fuels supply a majority of the world’s energy and also provide the raw materials, or feedstocks, for many essential everyday products. While energy provision is becoming increasingly decarbonized, the production of fuels, chemicals and materials requires carbon atoms as feedstocks. However, their production can be “de-fossilized”, by utilising renewable energy and alternative carbon sources. Likewise, a circular economy approach offers scope to reduce external dependencies and source other essential molecular feedstocks including critical raw materials from wastes.

This Pathfinder Challenge therefore focuses on the development of next generation technologies that turn today’s problematic waste streams into essential building blocks of a future circular economy. Furthermore, it specifically focusses on currently non- or hard-to-recycle types of synthetic polymer materials (including among other mixtures of different types of plastics, polymeric composite materials, micro-/nanoplastics, untreated plastic waste, diapers, rubber, etc.), flue gases, wastewater and seawater desalination brines. Proposals must target real-life industrial and household waste streams where current recycling methods face insurmountable barriers e.g., due to impurities, the presence of noxious additives, inseparable material mixtures or nonbiodegradable materials. An important side effect is the remediation of waste streams with respect to micro-/nanoplastics, trace metals and noxious substances. These novel technologies should be scalable, easily applicable and deliver products with higher economic value as compared to waste destruction.

The scope of technological solutions addressed in this Challenge is limited to the following technologies with currently low Technology Readiness Levels (TRLs), where significant synergies by working in a Challenge portfolio are expected: solar reforming and synthetic biology devices, brine mining and integrated capture and conversion technologies. Microbial-based and photocatalytic remediation processes are included as well. Computational material science and AI, and bottom-up synthetic biology are supported as key enablers at the fundamental research level.

Thermochemical approaches (such as pyrolysis or gasification) and “dark” (not lightdriven) chemical recycling are out-of-scope of this Pathfinder Challenge. Likewise, food and biomass waste, traditional bulk metal waste, glass, paper, cardboard and mono-PET waste are also out of scope.

Specific objectives

The Challenge seeks ambitious proposals that address one (and only one) of the following focus areas:

Area 1: Fully integrated waste-to-value devices

This includes 1) devices for converting waste streams into (feedstock for) fuels, chemicals and materials and 2) devices for remediation; where processes are solely driven by renewable energy sources (preferably directly by sunlight) and focus on the selective production of added value products, beyond hydrogen as the sole end product:

  1. Fully integrated solar reforming or synthetic biology devices, enabling the treatment of synthetic polymer materials, while delivering fast and efficient decomposition under sustainable reaction conditions (including the use of process chemicals).
  2. Integrated capture and conversion technologies, capturing and converting feedstock from flue gases, or wastewater in a single step/ single device into fuels, chemicals and materials, providing increased energy- and materials efficiency as compared to not fully integrated process chains.
  3. Membrane-based and electrochemical brine mining technologies recovering raw materials, CO2 and water from seawater desalinisation brines.
  4. Ex-situ remediation devices based on microbial/enzymatic and/or photocatalytic degradation, both purifying wastewater and seawater of noxious substances, metals, or nano-/microplastics, and producing added value remediation products. This should take place in a reactor, not in the open field.

Proposals addressing only parts of the full waste-to-value process (e.g., half reactions) will not be considered. Integrated hybrid approaches, at the interface of various disciplines, and autonomously operating devices continuously optimized with AI, are particularly welcome. The resulting devices must reach TRL 4 within the 3–4-year project lifetime.

The associated processes must not down-cycle the waste substrate but create products of higher economic and environmental value as compared to the initial waste stream. They must be energy and material-efficient and fully sustainable, minimising the associated energy, water, chemicals and land footprint. Operating conditions (e.g., related to temperature, pressure and the use of additional chemicals) should be optimised and the circular use of process consumables, such as water, catalyst materials or chemical additives maximised. They must deploy environmentally safe, stable materials, with non-toxic degradation products and the developed devices must be recyclable-by-design.

Proposals must take a holistic view of the complete waste valorisation chain by optimising the different elements (pre-treatment, conversion, product separation and storage) with respect to one another. The systems must also be robust and easy-to-handle to allow operations that are independent from large-scale infrastructures, with extended lifetimes and a capability to treat real-life waste streams which have undergone minimal sorting and pre-treatment.

Proposals have to clearly indicate how the proposed solution benchmarks against industrially deployed recycling methods such as mechanical recycling, composting, biogas fermentation or waste-to-energy technologies, and emerging recycling methods such as chemical recycling or thermochemical approaches.

Area 2: Understanding underlying mechanisms by means of computational material science and AI

Projects in this focus area must deliver advances and scientific breakthroughs in the fundamental understanding of the underlying physical, chemical, and biological processes that will enable fully sustainable and scalable waste-to-value devices. Projects should address all the following specific objectives:

Area 3: Cells from scratch by means of bottom-up synthetic biology

Projects in this area must look to deliver scientific breakthroughs in bottom-up synthetic biology to enable the use of tailored microbial cell factories for the degradation and valorisation of waste and the production of fossil-free fuels, chemicals, and materials. Projects should address all the following specific objectives:

Expected outcomes and impacts

This Challenge is in line with REPowerEU and Fit for 55. It is compliant with the Renewable Energy Directive, the Waste Framework Directive and the Critical Raw Materials Act. It supports the EU’s Circular Economy Action Plan (CEAP) and the herein included Plastics strategy. It builds on the Industrial Carbon Management strategy, the Communication on Sustainable Carbon Cycles, and the Directive on the promotion of the use of energy from renewable sources.

The portfolio of projects selected under this Challenge are expected to collectively cover Areas 1, 2 and 3. A maximum of one proposal from each of Areas 2 and 3 will be selected, whereas the aim for Area 1 is to select proposals that cover as many device categories (i-iv) as possible. Combining these three aspects into a single portfolio with close interaction between the projects and a commonly developed vision is expected to significantly speed up the innovation journey by driving synergies and mutual learning.

The resulting portfolio of projects will in time contribute to:

Programma,

Horizon Europe is een kaderprogramma van de EU voor onderzoek en innovatie. Ze bestaat uit 3 pijlers: Excellente wetenschappen, Wereldwijde uitdagingen en Europees industrieel concurrentievermogen en Innovatief Europa. Daarnaast bevat het programma ook nog een horizontaal deel met maatregelen om de lidstaten te ondersteunen om optimaal gebruik te maken van hun nationale onderzoeks- en innovatiepotentieel en de Europese onderzoeksruimte te versterken. Het beoogt ook de wetenschappelijke en technologische basis van de EU en de Europese Onderzoeksruimte (EOR) te versterken, het innovatie- en concurrentievermogen en de werkgelegenheid te stimuleren.

Eerste pijler: Excellente wetenschappen

Tweede pijler: Wereldwijde uitdagingen en Europees industrieel concurrentievermogen

Deze pijler richt zich op de wereldwijde uitdagingen die zijn geïdentificeerd in de Sustainable Development Goals. Om de schaal en complexiteit van deze problemen aan te pakken, is samenwerking nodig tussen belanghebbenden uit verschillende sectoren, waaronder onderzoeks- en onderwijsinstellingen, de industrie en NGO’s. Daarnaast moet deze inspanning bijdragen aan een robuuste Europese industriële sector, die banen creëert en het concurrentievermogen vergroot.

De tweede pijler focust op wereldwijde uitdagingen en bestaat uit zes clusters:

  1. Gezondheid
  2. Cultuur, creativiteit en een inclusieve samenleving
  3. Civiele veiligheid voor de samenleving
  4. Digitaal, industrie en ruimtevaart
  5. Klimaat, energie en mobiliteit
  6. Voeding, bio-economie, natuurlijke grondstoffen, landbouw en milieu

Het Gemeenschappelijk Centrum voor Onderzoek van de Europese Commissie (JRC) valt ook onder deze pijler.

Derde pijler: Innovatief Europa

De derde pijler is Innovatief Europa, met als doel Europa een leidende rol te laten spelen op het gebied van marktgestuurde innovatie. Daarnaast draagt deze pijler bij aan de ontwikkeling van het innovatielandschap van de Europese Unie door de samenwerking tussen bedrijven, onderzoeksinstellingen en het hoger onderwijs te versterken.

Horizontale pijler: Deelname verbreden en de Europese Onderzoeksruimte versterken

Daarnaast heeft horizon een nieuwe aanpak voor het vinden van oplossingen voor grote problemen in de Europese sfeer, namelijk in de vorm van missies;

  1. Adaptation to Climate Change: support at least 150 European regions and communities to become climate resilient by 2030
  2. Cancer: working with Europe’s Beating Cancer Plan to improve the lives of more than 3 million people by 2030 through prevention, cure and solutions to live longer and better
  3. Restore our Ocean and Waters by 2030
  4. 100 Climate-Neutral and Smart Cities by 2030
  5. A Soil Deal for Europe: 100 living labs and lighthouses to lead the transition towards healthy soils by 2030

Deelnemers:

In veel gevallen is Europese samenwerking nodig om in aanmerking te komen voor subsidie.

Cofinanciering

Het maximale subsidiepercentage binnen Horizon Europe varieert van 70% tot volledige projectfinanciering (100% subsidie).

Info & Aanvraag

Via de EU-portal Funding and Tenders opportunities. Horizon Europe is in direct beheer. Dit betekent dat de Europese Commissie of een Europees uitvoerend agentschap verantwoordelijk is voor de directe uitvoering van het implementatieproces van de financiering, van het creëren van oproepen tot de beoordeling en financiële afwikkeling.

Website: Horizon Europe